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GPU Computing

An assembly of hundreds and
thousands of PUs

SIMD Processing: Single
Instruction on Multiple Data
streams simultaneously

Well suited for highly parallel
numeric applications

Best Price/Performance ratio
Programming Tools

> CUDA (NVIDIA Proprietary)
»  OpenCL (Open Standard and Heterogeneous)
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Parallel Sorting 1/3: Min-Max Butterfly Sort

Finds minimum and maximum in data

For data of sizeN

> Total Stages arwg,N
> Complexity in terms of butterflies (comparatorsfié/2)log,N

vy

v

All stages are executed sequentially

v

Butterflies inside any stag®, are executed in parallel

v

After complete run of the Algorithm minimum and maximum vesuin
data are placed at x(0) and x(N-1)

X0 +4><4 3 @
X1 —5 5 5 » X1

4

X2 —»9 ><3 4 2— X2
X3 —=3 9 9 8—» X3
S ><2 1 T
X5 —»p 8 7 7 X5
X6 —»=7 >< 1 2 4= xe
x7 —1 7 8 ©

Fig : 1 8x8 Min-Max Butterfly



Parallel Sorting 2/3: Full Butterfly Sorting

v

Complete Sorting

For data of sizeN
logoN—1

> Total Stages artegyN + > °7 (n)
> Complexity in terms of butterflies (comparators)ié/2)xT .Stages

All stages are executed sequentially
Butterflies inside any stag®, are executed in parallel

v

v
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Fig : Size 8 Full Butterfly Sorting.
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Parallel Sorting 3/3: Results Butterfly Network Sort
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Fourier Transformation on GPU

» DFT converts a time domain N_1
. . . kK
signal into frequency domain. X (k)= x () Wy
"
» High computation complexit
gzco putation complexity " WO wo WO "
O(n) X1 wo  wt L. wN-1 X

» FFT are fast methods for : : : ; ;
computing the DFT. Kol we s whe e WD ] b

» FFT complexityO(n logn).
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X[K] = x[2nJW 5 + WK x[2n + WK
» The parallel structure of > P> N/

Cooley-Tukey FFT is well

. . _ -k
suited for GPU architecture XIKT = Akl + W - BIK]



The Cooley-Tukey Algorithm for FFT

Twiddle Properties

Cooley-Tukey DIT-FFT, Radix-2, N=8

> Symmetry
N
Wy? = —Wk
» Periodicity
WEN = W

» Recursion
W = -Wy /2

)= <[l

A A+WEB = Y[K

B A-WEB =Y[et] N N \ x
7 - 7
) —we e “we
5 =20 § =2 §=2

2 Point DFT .
o S=Memory Load/Store Stride



ToPe: An OpenCL based multidimensional FFT Library

» Almost Arbitrary length transform size
» Complex-to-Complex Transform type
» Multi-Radix (N = r", wherer =2 — 8,10, 15, 16)

» Algorithms (Cooley-Tukey DIT, Modified Cooley-Tukey, MigeRadix
FFT)

» Dimension supported up to 3D
» Precision (single and double)

» Auto tuning for multiple GPU with Static Load Balancing
(GPU+Thread Level)

» Open Sourcel(t t p: // code. googl e. conl p/ t ope-fft)

Speedup over FFTW 50x Speedup over cuFF¥ 5x


http://code.google.com/p/tope-fft

Results 1/2: ToPe FFT

Running Time of FFT Libraries for 1D Radix-5 S-Precision on GTX-260

Running Time of FFT Libraries for 1D Radix-6 S-Precision on GTX-260
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Results 2/2: ToPe FFT

Running Time of ToPe 2D-FFT on GTX-260 for D-Precision C2C
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Micromagnetics 1/3:Accelerating Magnetostatic Field @omation using GPUs

The equation for Magnetostatic fiettiat a cell position is

H(r):—ZN(r—r’) ~m(r’)

r

N is 3 x 3 geometric tensor anu is magnetization

H=-N-M

2Nz —12Ny —12Ny —1

Mokok) = > > 3 m

17=0 r’ =0 r{=0

exp [
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Hegjm = New
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A magnetized body with non-periodit. The
size of the magnetic body is doubled along
each axis to remove aliasing effects and to
make a periodic signal in Fourier space.

()

(a)Firslty Ny Nz transforms are carried out
along the x-axis. (b) In the second stage (N x +
1) Nz transforms are carried out along the
y-axis. The +1 due to conjugate property of
FFT's.(c) Finally, (N x + 1) 2Ny transforms
along the z-axis.

2Portion of this work has been published in "10th Europeanf€@emce on Magnetic Sensors and Actuators, Vienna,

Austria"



Micromagnetics 2/3: Flowchart of our GPU Field Solver
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Figure: Design Overview of GPU Magnetostatic Field solvigie double line rectangles show processes performed irllpara
by the GPU. The dotted line rectangles show the dot produtbpeed by parallel threads on CPU.



Micromagnetics 3/3: Results and Comparisons
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Accuracy

with MTT and point-wise multiplication time on CPU OOMMF
Computation Cells €mean €max T)mean
1 Million 7.59 — 11 3.52e — 10 1.0le — 14
2 Million 4.04e — 11 1.68e — 10 5.33e — 15
4 Million 7.56e — 11 3.65e — 10 9.96e — 15
8 Million 7.91le — 11 3.38e — 10 1.04e — 14

Speedup value
IS

‘speedup against oommf —&—

2 3 4 5 6
number of cells (in millions)

Fig: Total Demag Field Computation speedup against

Table: validation of our simulation computing againstu.-mag Standard problem 4 with an S-state initial magnetizati
HereH’ is OOMMF computed. Here;, = |H — H’|2, andn = €/ |H"

3This work has been accepted for publication in Elsevier "@oters & Electrical Engineering" Journal



Time Stepping Technique 1/2: Runge Kutta like scheme foirtegration of LLG

>

Numerical solution for Landau-Lifshitz equation of motitmm
magnetization

The fundamental LLG equation:

om
o = —m X (heff + a (M X heff))

Discretization using mid-point rule:
m*HE (@) —m () = 7/2 [m*T () + m¥ )] x H

Time-stepping scheme based on the properties of mid-
rule and Runge-Kutta method.

Properties of magnetization dynamics are preserved
steps.

Ateach time-step 8 x 3 linear system of equations is soh
instead of3N x 3N in the previous cases

It reduces the computations of thgg per time-step.

Average

Elistep 2
=t

Elistep 4
Elstep 5

Fig: Flow of different steps.



Time Stepping Technique 2/2: Results Runge Kutta like sehem

arbabetal
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Comparison with OOMMF using muMAG Standard Problem 4. Plot § o 5 nm cell size and various time-steps

spatially average magnetizatiomx > versus time with constant
applied field at an angle df90° off x-axis and time-step of 1.25 ps.
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Plot of 1-mav as a function of time for various time-stepsificming . . .
the conservation of magnetization. Plot of the relative energey for conservative case= 0 as a function
of time at various time-steps.The energy is preserved foina steps.

1This work has been published in "Journal of Applied Physics"



Conclusion

v

Developed and implemented new sorting algorithms
Developed generic FFT library on GPUs
GPU accelerated Magnetostatic Field Solver

Designed and developed new time integration method for LLG
equation
Designed new load balancing scheme on multiple GPUs

v

v

v

v
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